A boundedness result for Marcinkiewicz integral operator
نویسندگان
چکیده
منابع مشابه
Bilinear Fourier integral operator and its boundedness
We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.
متن کاملOn the boundedness of the Marcinkiewicz operator on multipliers spaces
Let h(y) be a bounded radial function and Ω (y) an H function on the unit sphere satisfying the cancelation condition. Then the Marcinkiewicz integral operator μΩ related to the Littlewood-Paley g−function is defined by
متن کاملL2-boundedness of the Cauchy Integral Operator for Continuous Measures
1. Introduction. Let µ be a continuous (i.e., without atoms) positive Radon measure on the complex plane. The truncated Cauchy integral of a compactly supported function f in L p (µ), 1 ≤ p ≤ +∞, is defined by Ꮿ ε f (z) = |ξ −z|>ε f (ξ) ξ − z dµ(ξ), z ∈ C, ε > 0. In this paper, we consider the problem of describing in geometric terms those measures µ for which |Ꮿ ε f | 2 dµ ≤ C |f | 2 dµ, (1) f...
متن کاملSharp Function Estimate and Boundedness on Morrey Spaces for Multilinear Commutator of Marcinkiewicz Operator
As the development of singular integral operators, their commutators have been well studied(see [1][3-5][10-12]). Let T be the Calderón-Zygmund singular integral operator. A classical result of Coifman, Rocherberg and Weiss (see [3]) state that commutator [b, T ](f) = T (bf) − bT (f)(where b ∈ BMO(Rn)) is bounded on Lp(Rn) for 1 < p < ∞. In [10-12], the sharp estimates for some multilinear comm...
متن کاملBoundedness of higher-order Marcinkiewicz-Type integrals
Let A be a function with derivatives of order m and DγA∈ Λ̇β (0 < β < 1, |γ| =m). The authors in the paper proved that ifΩ∈ Ls(Sn−1) (s≥ n/(n−β)) is homogeneous of degree zero and satisfies a vanishing condition, then both the higher-order Marcinkiewicz-type integral μΩ and its variation μ̃ A Ω are bounded from L p(Rn) to Lq(Rn) and from L1(Rn) to Ln/(n−β),∞(Rn), where 1 < p < n/β and 1/q = 1/p− ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2020
ISSN: 2391-5455
DOI: 10.1515/math-2020-0046